mbd_hamiltonian.F90 Source File


Contents

Source Code


Source Code

! This Source Code Form is subject to the terms of the Mozilla Public
! License, v. 2.0. If a copy of the MPL was not distributed with this
! file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef DO_COMPLEX_TYPE

module mbd_hamiltonian
!! Forming and solving MBD Hamiltonian.

use mbd_constants
use mbd_damping, only: damping_t
use mbd_dipole, only: dipole_matrix
use mbd_geom, only: geom_t
use mbd_gradients, only: grad_t, grad_matrix_re_t, grad_matrix_cplx_t, grad_request_t
use mbd_matrix, only: matrix_re_t, matrix_cplx_t
use mbd_utils, only: result_t, tostr

implicit none

private
public :: get_mbd_hamiltonian_energy

interface get_mbd_hamiltonian_energy
    !! Form and solve either a real or a complex MBD Hamiltonian.
    !!
    !! The real-typed version is equivalent to \(\mathbf q=0\).
    !!
    !! $$
    !! \begin{gathered}
    !! E_\text{MBD}(\mathbf q)=\frac12\operatorname{Tr}\big(\sqrt{\mathbf Q(\mathbf
    !! q)}\big)- 3\sum_i\frac{\omega_i}2,\qquad
    !! \mathbf Q_{ij}(\mathbf q)=\omega_i^2\delta_{ij}\mathbf I+
    !! \omega_i\omega_j\sqrt{\alpha_{0,i}\alpha_{0,j}}\mathbf T_{ij}(\mathbf q)
    !! \\ \mathbf Q(\mathbf q)\equiv
    !! \mathbf C(\mathbf q)\boldsymbol\Lambda(\mathbf q)\mathbf C(\mathbf
    !! q)^\dagger,\qquad
    !! \boldsymbol\Lambda(\mathbf q)
    !! \equiv\operatorname{diag}(\{\tilde\omega_i(\mathbf q)^2\}),\qquad
    !! \operatorname{Tr}\big(\sqrt{\mathbf Q(\mathbf q)}\big)
    !! =\sum_i\tilde\omega_i(\mathbf q)
    !! \end{gathered}
    !! $$
    !!
    !! $$
    !! \begin{aligned}
    !! \partial E_\text{MBD}&=\frac14\operatorname{Tr}\big(
    !! \mathbf C\boldsymbol\Lambda^{-\frac12}\mathbf C^\dagger
    !! \partial\mathbf Q
    !! \big)-
    !! 3\sum_i\frac{\partial\omega_i}2
    !! \\ \frac{\partial E_\text{MBD}}{\partial X_i}&=
    !! \operatorname{Re}\frac12\sum_{p\zeta}(
    !! \mathbf C\boldsymbol\Lambda^{-\frac12}\mathbf C^\dagger
    !! )_{i\zeta,p}
    !! \frac{\partial Q_{p,i\zeta}}{\partial X_i}-
    !! \frac32\frac{\partial\omega_i}{\partial X_i}
    !! \end{aligned}
    !! $$
    !!
    !! $$
    !! \begin{aligned}
    !! \partial\mathbf Q_{ij}=&
    !! 2\delta_{ij}\omega_i\partial\omega_i\mathbf I+
    !! \omega_i\omega_j\sqrt{\alpha_{0,i}\alpha_{0,j}}\mathbf T_{ij}\left(
    !! \frac{\partial\omega_i}{\omega_i}+
    !! \frac{\partial\omega_j}{\omega_j}+
    !! \frac12\frac{\partial\alpha_{0,i}}{\alpha_{0,i}}+
    !! \frac12\frac{\partial\alpha_{0,j}}{\alpha_{0,j}}
    !! \right)
    !! \\ &+\omega_i\omega_j\sqrt{\alpha_{0,i}\alpha_{0,j}}
    !! \partial\mathbf T_{ij}
    !! \end{aligned}
    !! $$
    module procedure get_mbd_hamiltonian_energy_real
    module procedure get_mbd_hamiltonian_energy_complex
end interface

contains

#endif

#ifndef DO_COMPLEX_TYPE
type(result_t) function get_mbd_hamiltonian_energy_real( &
        geom, alpha_0, omega, damp, grad) result(res)
#else
type(result_t) function get_mbd_hamiltonian_energy_complex( &
        geom, alpha_0, omega, damp, grad, q) result(res)
#endif
    type(geom_t), intent(inout) :: geom
    real(dp), intent(in) :: alpha_0(:)
    real(dp), intent(in) :: omega(:)
    type(damping_t), intent(in) :: damp
    type(grad_request_t), intent(in) :: grad
#ifdef DO_COMPLEX_TYPE
    real(dp), intent(in) :: q(3)
#endif

#ifndef DO_COMPLEX_TYPE
    type(matrix_re_t) :: relay, dQ, T, modes, c_lambda12i_c
    type(grad_matrix_re_t) :: dT
#else
    type(matrix_cplx_t) :: relay, dQ, T, modes, c_lambda12i_c
    type(grad_matrix_cplx_t) :: dT
#endif
    real(dp), allocatable :: eigs(:)
    integer :: n_negative_eigs, n_atoms, i_xyz, i_latt
    character(120) :: msg

    n_atoms = geom%siz()
    call geom%clock(20)
#ifndef DO_COMPLEX_TYPE
    T = dipole_matrix(geom, damp, dT, grad)
#else
    T = dipole_matrix(geom, damp, dT, grad, q)
#endif
    call geom%clock(-20)
    if (geom%has_exc()) return
    if (grad%any()) then
        call relay%copy_from(T)
    else
        call relay%move_from(T)
    end if
    call relay%mult_cross(omega * sqrt(alpha_0))
    call relay%add_diag(omega**2)
    call geom%clock(21)
    if (geom%get_modes .or. grad%any()) then
        call modes%alloc_from(relay)
        allocate (eigs(3 * n_atoms))
        call modes%eigh(eigs, geom%exc, src=relay, clock=geom%timer)
        if (geom%get_modes) then
#ifndef DO_COMPLEX_TYPE
            call move_alloc(modes%val, res%modes)
#else
            call move_alloc(modes%val, res%modes_k_single)
#endif
        end if
    else
        eigs = relay%eigvalsh(geom%exc, destroy=.true., clock=geom%timer)
    end if
    if (geom%has_exc()) return
    call geom%clock(-21)
    if (geom%get_eigs) res%mode_eigs = eigs
    n_negative_eigs = count(eigs(:) < 0)
    if (n_negative_eigs > 0) then
        msg = "CDM Hamiltonian has "//trim(tostr(n_negative_eigs))// &
            " negative eigenvalues"
        if (geom%param%zero_negative_eigvals) then
            where (eigs < 0) eigs = 0d0
            call geom%log%warn(msg)
        else
            geom%exc%code = MBD_EXC_NEG_EIGVALS
            geom%exc%msg = msg
            return
        end if
    end if
    res%energy = 1d0 / 2 * sum(sqrt(eigs)) - 3d0 / 2 * sum(omega)
    if (.not. grad%any()) return
    call geom%clock(22)
    call c_lambda12i_c%copy_from(modes)
    call c_lambda12i_c%mult_cols_3n(eigs**(-1d0 / 4))
    call geom%clock(14)
    c_lambda12i_c = c_lambda12i_c%mmul(c_lambda12i_c, transB='C')
    call geom%clock(-14)
#ifdef DO_COMPLEX_TYPE
    c_lambda12i_c%val = conjg(c_lambda12i_c%val)
#endif
    call dQ%init_from(T)
    call geom%clock(15)
    if (grad%dcoords) then
        allocate (res%dE%dcoords(n_atoms, 3))
        do i_xyz = 1, 3
            dQ%val = dT%dr(:, :, i_xyz)
            call dQ%mult_cross(omega * sqrt(alpha_0))
            dQ%val = c_lambda12i_c%val * dQ%val
            res%dE%dcoords(:, i_xyz) = 1d0 / 2 * dble(dQ%contract_n33_rows())
        end do
    end if
    if (grad%dlattice) then
        allocate (res%dE%dlattice(3, 3))
        do i_latt = 1, 3
            do i_xyz = 1, 3
                dQ%val = dT%dlattice(:, :, i_latt, i_xyz)
                call dQ%mult_cross(omega * sqrt(alpha_0))
                dQ%val = c_lambda12i_c%val * dQ%val
                res%dE%dlattice(i_latt, i_xyz) = 1d0 / 4 * dble(dQ%sum_all())
            end do
        end do
    end if
    if (grad%dalpha) then
        dQ%val = T%val
        call dQ%mult_cross(omega * sqrt(alpha_0))
        call dQ%mult_rows(1d0 / (2 * alpha_0))
        dQ%val = c_lambda12i_c%val * dQ%val
        res%dE%dalpha = 1d0 / 2 * dble(dQ%contract_n33_rows())
    end if
    if (grad%domega) then
        dQ%val = T%val
        call dQ%mult_cross(omega * sqrt(alpha_0))
        call dQ%mult_rows(1d0 / omega)
        call dQ%add_diag(omega)
        dQ%val = c_lambda12i_c%val * dQ%val
        res%dE%domega = 1d0 / 2 * dble(dQ%contract_n33_rows()) - 3d0 / 2
    end if
    if (grad%dr_vdw) then
        dQ%val = dT%dvdw
        call dQ%mult_cross(omega * sqrt(alpha_0))
        dQ%val = c_lambda12i_c%val * dQ%val
        res%dE%dr_vdw = 1d0 / 2 * dble(dQ%contract_n33_rows())
    end if
#ifdef DO_COMPLEX_TYPE
    if (grad%dq) then
        allocate (res%dE%dq(3))
        do i_latt = 1, 3
            dQ%val = dT%dq(:, :, i_latt)
            call dQ%mult_cross(omega * sqrt(alpha_0))
            dQ%val = c_lambda12i_c%val * dQ%val
            res%dE%dq(i_latt) = 1d0 / 4 * dble(dQ%sum_all())
        end do
    end if
#endif
    call geom%clock(-15)
    call geom%clock(-22)
end function

#ifndef DO_COMPLEX_TYPE
#   define DO_COMPLEX_TYPE
#   include "mbd_hamiltonian.F90"

end module

#endif